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TOWARD A MECHANICS OF ADAPTIVE BEHAVIOR: EVOLUTIONARY DYNAMICS AND

MATCHING THEORY STATICS
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One theory of behavior dynamics instantiates the idea that behavior evolves in response to selection
pressure from the environment in the form of reinforcement. This computational theory implements
Darwinian principles of selection, reproduction, and mutation, which operate on a population of
potential behaviors by means of a genetic algorithm. The behavior of virtual organisms animated by this
theory may be studied in any experimental environment. The evolutionary theory was tested by
comparing the steady-state behavior it generated on concurrent schedules to the description of steady
state behavior provided by modern matching theory. Ensemble fits of modern matching theory that
enforced its constant-k requirement and the parametric identities required by its equations, accounted
for large proportions of data variance, left random residuals, and yielded parameter estimates with
values and properties similar to those obtained in experiments with live organisms. These results
indicate that the dynamics of the evolutionary theory and the statics of modern matching theory
together constitute a good candidate for a mechanics of adaptive behavior.
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A quantitative mechanics of adaptive behav-
ior must include an account of behavior that is
in equilibrium with conditions in the environ-
ment, that is, a statics of behavior, and an
account of behavior that is in transition
between equilibrium conditions, that is, a
dynamics of behavior. Modern matching the-
ory provides an equilibrium account that
accurately describes a large and varied body
of data from many vertebrate species. An
adequate account of behavior dynamics has
been more elusive, but a recently proposed
computational theory of selection by conse-
quences generates steady state behavior that
can be described by at least some of the
equations of matching theory (McDowell,
2004; McDowell & Caron, 2007; McDowell,
Caron, Kulubekova & Berg, 2008). The pur-
pose of the analyses and experiments reported
in the present article was to evaluate this
theory more fully, and to assess its viability as a
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dynamic account that, in combination with
modern matching theory, might constitute a
reasonably comprehensive mechanics of adap-
tive behavior. The evolutionary theory was
evaluated by examining how well an extensive
set of concurrent-schedule data generated by
the theory were described by all the applicable
equations of modern matching theory. Addi-
tional computational experiments were then
conducted to extend the domain over which
the theory could be evaluated. To motivate this
research it is necessary to review modern
matching theory and the evolutionary theory
of behavior dynamics.

Behavior at Equilibrium: Modern Matching Theory

Matching theory can be said to exist in two
versions. One, classical, version is based on the
original matching equation proposed by
Herrnstein (1961) and the other, modern,
version is based on the power function
modification of the original matching equa-
tion discussed by Staddon (1968) and Baum
and Rachlin (1969), and formalized and
studied extensively by Baum (1974, 1979).
The two foundational equations are shown in
Figure 1 as Equations 1 and 5. In these and all
equations in Figure 1 the Bs represent re-
sponse rates, the rs represent reinforcement
rates, numerical subscripts on the rates refer to
the two components of a concurrent schedule,
and the remaining quantities in the equations
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Fig. 1. The equations of classic (left panels) and modern (right panels) matching theory. The equations are referred
to in the text by the numbers that appear in the upper left corner of each panel. The modern equations entail bias
parameters and exponents, whereas the classic equations do not. The equations in the first row are the foundational
equations of each theory, from which the remaining equations are derived. The modern equations reduce to the classic
equations when all bias parameters and exponents equal unity (Equations 5 and 9 both reduce to the ratio form of
Equation 1, that is, B;/Bys = 1/%). Figure and caption are adapted from McDowell’s (2005) Figure 1.
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are parameters. Herrnstein (1970) showed
that Equations 2 through 4 of the classic
theory can be derived from the foundational
Equation 1 by assuming that a constant
summed rate of behavior, k, occurs in all
environments. McDowell (1986) showed that
Equations 6 through 9 of the modern theory
can be derived from the foundational Equa-
tion 5 based on the same assumption.
McDowell (2005) argued that all the equa-
tions of classic matching theory were false, or
at best had limited applicability, including the
extensively studied and apparently successful
single-alternative hyperbola, Equation 2. His
argument was based on a formal analysis of the
theory in light of empirical findings, and on
evidence indicating that the constant-k as-
sumption of the theory was false. McDowell
explained why Equation 2 appeared to de-
scribe data well even though it is false, and
how the modern theory predicts the violation
of the classic theory’s constant-k assumption.
He also showed that data from a single-
schedule experiment that violated the classic
theory’s constant-k assumption (McDowell &
Dallery, 1999) was accurately described by the
modern theory, and that data from a concur-
rent schedule experiment (Dallery, McDowell,
& Soto, 2004) was accurately described by all
the relevant equations of the modern theory,
but not by any of the relevant equations of the
classic theory. The latter demonstration en-
tailed fitting the classic theory’s Equations 1, 3
and 4 simultaneously, with shared parameters,
and fitting forms of the modern theory’s
Equations 5, 7 and 8 simultaneously, with
shared parameters. A subsequent concurrent
schedule experiment (Dallery, Soto, & Mec-
Dowell, 2005) supported McDowell’s (2005)
conclusion that the classic theory of matching
was false, while the modern theory remained
tenable as an account of steady-state behavior.
In the present article, the modern theory of
matching is taken as the correct account of
behavior in equilibrium with conditions in the
environment. It should be recognized, howev-
er, that although the foundational equation of
the theory, Equation 5, is almost certainly
correct, the remaining equations have not
been tested extensively. In particular, the
constant-k assumption that is required in order
to obtain the absolute response rate forms,
Equations 6 through 8, has not been tested
rigorously. The relatively unfamiliar equations
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of modern matching theory, especially Equa-
tions 7 and 8, will be explained in more detail
later.

Behavior in Transition: Selection by Consequences

McDowell’s (2004) selectionist dynamic the-
ory uses Darwinian principles of selection,
reproduction, and mutation to cause a popu-
lation of potential behaviors to evolve under
the selection pressure provided by reinforce-
ment from the environment. These principles
are implemented by a genetic algorithm that
animates virtual organisms created by a com-
puter program. The virtual organisms behave
continuously in time, emitting one behavior
from the population of potential behaviors
each time tick. The emitted behavior can be
recorded and studied as if it were the behavior
of a live organism. Reinforcement, or selec-
tion, in the dynamic theory causes the popu-
lation of potential behaviors to become more
concentrated in the class of behavior targeted
for reinforcement, a class analogous to a key
peck or a lever press, while variation due to
genotypic recombination (McDowell, 2004)
and mutation cause behavior to become more
distributed among the classes of potential
behavior. These opposing forces of variation
and selection reach a dynamic equilibrium in a
given experimental environment, at which
point they generate a roughly constant rate
of responding. Additional details of the
selectionist theory are provided in the Appen-
dix.

This dynamic theory is not stated in the
traditional form of a differential equation, the
solution of which produces an equilibrium
outcome. Instead, it is stated as a set of low
level rules of selection, reproduction, and
mutation that operate on a moment-by-mo-
ment basis, and that must be applied repeat-
edly to generate a higher-level time-averaged
equilibrium result (McDowell, 2004). This is
as an instance of complexity theory, which is
a modern alternative to traditional analytic
approaches based on the calculus. Some
scientists consider complexity theory to be an
advance over traditional approaches because it
has been able to handle at least some
problems that have proved refractory to
existing methods (McDowell & Popa, 2009).
In complexity theory, higher level outcomes
typically cannot be predicted from a theory’s
low-level rules, and so they are said to be
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emergent properties of those rules. To evalu-
ate such a theory it is usually necessary to
implement the low-level rules in a computer
program, which when run reveals the higher
level outcome, and this outcome can then be
compared with findings from live experiments.

McDowell and Caron (2007) studied the
equilibrium behavior generated by the evolu-
tionary dynamics on single random-interval
(RI) schedules. They showed that this behavior
was accurately described by the modern
theory’s single-alternative equation, Equation
6, but not by the classic theory’s single-
alternative equation, Equation 2. Both equa-
tions accounted for large proportions of
response rate variance, but the residuals from
fits of Equation 2 showed systematic trends,
whereas those from fits of Equation 6 did not.
McDowell and Caron concluded that, for
single RI schedules at least, the selectionist
dynamics of the evolutionary theory produced
equilibrium behavior that was well described
by the modern theory of matching.

More recently, McDowell et al. (2008)
studied the behavior of virtual organisms
animated by the evolutionary dynamics on
concurrent RI RI schedules. At equilibrium
the organisms produced behavior that was well
described by the power function matching
equation, Equation 5, with reasonable and
expected values of the parameters, @ and b.
They did not, however, conduct the more
stringent test of the evolutionary theory
recommended by McDowell (2005) for con-
current schedule data. This test engages the
entirety of modern matching theory, including
its constant-k assumption, by fitting forms of
Equations 5, 7, and 8 as an ensemble, with
shared parameters. Hence, to date, the evolu-
tionary dynamics has been shown to produce
behavior at equilibrium that is well described
by Equations 5 and 6 of the modern theory of
matching, with appropriate and expected
parameter values, but that is inconsistent with
the corresponding equations of the classic
theory (Equations 1 and 2).

In the first part of the present study, the
more stringent test of the evolutionary theory
recommended by McDowell (2005) was con-
ducted on McDowell et al.’s (2008) extensive
set of concurrent schedule data. This was the
first test of the evolutionary theory’s confor-
mance to forms of the single-alternative
Equations 7 and 8 of modern matching theory.
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Notice that these equations, as well as the
corresponding Equations 3 and 4 of the classic
theory, are functions of two variables, namely,
rn and 7, which are reinforcement rates
obtained from the two alternatives of a
concurrent schedule. These equations de-
scribe surfaces on the two-dimensional rein-
forcement rate domain. This test of the
evolutionary theory, which will be described
in detail in the next section, revealed that
although the typical concurrent schedule
experiment may adequately sample the do-
main of Equation 5, which consists of rein-
forcement rate ratios, it is likely to sample only
a very small portion of the two-dimensional
domains of Equations 7 and 8 (and Equations
3 and 4). Hence new experiments were
required to test more fully the conformance
of behavior generated by the evolutionary
dynamics to these equations. The extended
domain experiments constituted the second
part of the present project.

COMPLETE TEST OF THE EVOLUTIONARY
DYNAMICS ON CONCURRENT
SCHEDULE DATA

McDowell et al. (2008) studied the behavior
of virtual organisms animated by the evolution-
ary theory on concurrent RI RI schedules. As in
every implementation of the theory, parental
selection functions (psfs) were used to choose
parent behaviors for mating on the basis of
their fitness (as described in more detail in the
Appendix). The means of these functions can
be taken to reflect the impact of each selection
event (McDowell, 2004), where smaller means
correspond to stronger selection events, and
hence are analogous to larger reinforcer
magnitudes. The symmetric concurrent sched-
ules in McDowell et al’s experiment were
characterized by psfs having identical means
in the two components. Hence, the only
difference between the components of the
concurrent schedules was the rate of reinforce-
ment delivered by the individual RI schedules.

Before proceeding with the analyses it will
be helpful to examine Equations 7 and 8 more
carefully. While notationally complicated,
these equations are conceptually straightfor-
ward. Each expresses the absolute rate of
responding in a component of a concurrent
schedule as a function of the reinforcement
rates obtained from both components. There
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are three comparisons in each equation: a
comparison of the target component (denoted
by the subscript on B) with the background
(denoted by the subscript, ¢), a comparison of
the target component with the other compo-
nent, and a comparison of the target compo-
nent with itself. Each comparison consists of a
ratio of reinforcement rates, and a bias
parameter and exponent that apply to that
ratio, as indicated by their subscripts. The
three terms inside the square brackets of
Equation 7, for example, constitute compari-
sons of component 1 with the background,
component 1 with component 2, and compo-
nent 1 with itself, the last of which reduces to
unity. As noted, each reinforcement rate ratio
has an appropriately subscripted bias parame-
ter and exponent. Similarly, the three terms
inside the square brackets of Equation 8
constitute comparisons of component 2 with
the background, component 2 with compo-
nent 1, and component 2 with itself. It is
important to recognize that these equations
were not assembled on any a priori logical or
theoretical grounds, they are simply the
mathematical consequence of applying the
constant-k assumption to Equation 5, and then
working through the algebra (McDowell,
1986). The calculation itself produced the
comparisons that appear in Equations 7 and 8.
McDowell (2005) noted that the equations of
modern matching theory could be simplified for
fitting by setting the three exponents they entail
to the same value. He also pointed out that not
all the parameters in the equations can be
estimated independently. Itis possible, however,
to assemble composite parameters from the
parameters native to the equations that do
permit independent estimation. With these
composite parameters, and the recommended
exponent simplification, McDowell (2005)
showed that Equations 5, 7, and 8 become
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with composite, independently estimable, pa-
rameters,

and

McDowell also showed that with the recom-
mended exponent simplification,

ble _ C2e

b

and, importantly, that Equation 9 in Figure 1
reduces to Equation 5" above.

Equations 5’, 7' and 8 constitute a com-
plete statement of modern matching theory.
Equation 5’ is the well known power function
matching equation, and Equations 7' and 8’
are single-alternative equations that are re-
quired by the theory to describe responding in
each component of a concurrent schedule.
Note that both Equation 7" and Equation 8’
reduce to Equation 6 when » = 0 in Equation
7' and r; = 0 in Equation 8', which means they
are both forms of the canonical absolute
response rate equation, Equation 6. Note also
that Equations 7' and 8’ engage the constant-k
assumption of the modern theory inasmuch as
this assumption is required for their deriva-
tion. The three equations entail a total of four
free parameters, namely, k, which appears in
both Equations 7' and 8', and a, ¢, and cqe,
which appear in all three equations.
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METHOD

In Phases 1 and 3 of McDowell et al.’s (2008)
experiment, four parental selection function
means that were identical in the two compo-
nents (namely, 20, 40, 60, and 80) were studied
at each of 10 mutation rates (0.5, 1, 2, 3, 5, 7.5,
10, 12, 20, and 50%). Details of the theory’s
implementation in these phases are given in the
Appendix. The rate of mutation in the evolu-
tionary theory is probably best conceptualized
as an organismic variable. For example, Mc-
Dowell et al. reported that at low mutation rates
behavior generated by the theory tended to be
perseverative, getting stuck in particular classes,
and was relatively insensitive to obtained
reinforcement rate ratios. At high mutation
rates, on the other hand, behavior tended to be
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impulsive, jumping from class to class, and
showed a similar relative insensitivity to the
reinforcement rate ratios.

McDowell et al.’s (2008) Table 3 summariz-
es the 40 conditions they arranged. Each
entailed 11 concurrent schedules with inde-
pendent RI components ranging from RI 20
(time ticks) to RI 120. FEach concurrent
schedule was in effect for 20,500 generations,
or time ticks, and each of the 40 conditions
was replicated 5 to 20 times. The 40 conditions
(psf mean pair X mutation rate), 11 concur-
rent schedules per condition, and 5 to 20
replications of each condition, constituted
about 72 million generations of responding.
In their analyses, they fitted Equation 5, the
power function matching equation, to the
reinforcement and response rate ratios from
each replication of a condition, resulting in
330 fits of that equation. For the present
analyses, the reinforcement and response rates
were first averaged over the 5 to 20 replications
of each condition, yielding 40 averaged data
sets. All analyses were then conducted on these
averages.

Ten fits of Equations 5’, 7' and 8" were
conducted with these data, one for each
mutation rate. If mutation rate is conceptual-
ized as an organismic variable, then this is
analogous to fitting the equations to data from
10 subjects. At each mutation rate, the three
equations were fitted simultaneously to the
data from all four psf mean pairs. Hence each
fit entailed 4 of the 40 conditions of the
experiment. Assuming that the psf mean
corresponds to reinforcer magnitude, the
constant-k assumption of matching theory
requires k to remain constant across the four
psf mean pairs, and hence it is theoretically
necessary to conduct this fit with just one
shared k value. Extending the ensemble fitting
method developed by McDowell (2005) to this
more complicated situation, a normalized
residual sum of squares (RSS) was calculated
for each pair of psf means:

Normalized RSSSum; =
RSS; RSSy  RSSy
SS, T SSy T Ssy (10)

where SS represents the total sum of squares,
the numerical subscripts refer to the three
equations, and the index, ¢, refers to the i pst
mean pair. The four sums generated in this
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way were then themselves summed to produce
the quantity to minimize in the ensemble fit,
namely,

Total Normalized RSSSum =

4
Z Normalized RSSSum;,
i=1

(11)

where the summation extends over the four
psf mean pairs.

This ensemble fit entailed three sources of
variance (B;, By, and B;/Bs) at each psf mean
pair, yielding a total of 12 sources of variance
across the four psf mean pairs that were fitted
simultaneously. For each fit, the quantity
defined by Equation 11 was minimized by
adjusting one k parameter, and one q, ¢, and
¢9. parameter for each psf mean pair. The
single %k parameter was shared by eight
equations in the ensemble fit, and each of
the a, cje, and cg. parameters were shared by
the three equations at each psf mean pair.
Hence, for every ensemble fit, 12 sources of
variance were fitted simultaneously by adjust-
ing 13 parameters to minimize the quantity
defined by Equation 11.

To summarize and recapitulate the analysis,
consider Figure 2, which is a schematic dia-
gram of a data set to which Equations 5', 7',
and 8’ may be fitted as an ensemble. Each
square represents a source of variance (rein-
forcement and response rates, or ratios, from
11 concurrent schedules). As discussed earlier,
there are three sources of variance at each psf
mean pair and each has its own RSS (from the
fitted equation) and SS. For the ensemble fit,
the 12 individual quotients, RSS/SS, were
summed (Equation 11), and this sum was
minimized by adjusting one k shared across all
psf mean pairs, and one a, ¢, and co. shared
by the three sources of variance at each psf
mean pair. Because k was not permitted to vary
across any of the individual sources of vari-
ance, and because the other parameters were
not permitted to vary across the three sources
of variance at each psf mean pair, these fits
were highly restrictive. They constituted a
stringent test of how well the behavior
produced by the evolutionary dynamics con-
formed to the steady-state equations of mod-
ern matching theory.

To compare the modern theory with the
classic theory, ten analogous ensemble fits of
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Fig. 2. Schematic diagram of a data set to which the
three equations of modern matching theory may be fitted
as an ensemble. Twelve sources of variance (reinforcement
and response rates from concurrent schedules), which are
represented by squares, are fitted simultaneously by
adjusting a single k, shared across all psf mean pairs (20-
20, 40-40, etc.), and one a, ¢;,, and ¢z, at each psf mean
pair, shared by the three equations at that mean pair. The
13 parameters are adjusted simultaneously to minimize the
sum of the twelve individual RSS/SS ratios (Equation 11),
one ratio calculated from each source of variance. A
similar schematic diagram can be drawn to illustrate how
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Equations 1, 3, and 4 were carried out on this
data set. At each mutation rate, the quantity
defined by Equation 11 was minimized by
adjusting a single k parameter and four 7,
parameters, one 7, for each psf mean pair.
Hence for each ensemble fit, 12 sources of
variance were fitted simultaneously by adjust-
ing five parameters to minimize the quantity
defined by Equation 11. Again, these were
highly restrictive fits and constituted a strin-
gent test of the evolutionary dynamics’ consis-
tency with the steady-state requirements of
classic matching theory.

RESULTS AND DiscussioN

Percentages of variance accounted for
(%VAF) were calculated separately for each
source of variance. This permitted the quality
of the fit to be examined for each source
separately. Hence, 12 %VAFs were calculated
for each of the 10 ensemble fits of the modern
theory equations, and for each of the 10
ensemble fits of the classic theory equations.
The median %VAFs for the three equations of
the modern theory and the three equations of
the classic theory across psf mean pairs and
mutation rates are plotted in Figure 3. The
error bars span the interquartile range. As this
plot shows, the %VAFs for fits of the modern
theory were uniformly large, while for the
classic theory they were more variable, al-
though the median %VAF was at or above a
respectable 80% for the three equations of the
classic theory. For both theories the %VAFs
tended to be smaller at the lowest and the
highest mutation rates, and for the classic
theory they were often negative at these rates.
Negative %VAFs indicate that the data varied
more from the fitted function than from their
own mean. Importantly, the %VAFs for the
modern theory were greater than the corre-
sponding %VAFs for the classic theory in all
individual comparisons of the 120 sources of
variance.

Of course it is not surprising that higher
%VAFs characterized the ensemble fits of the

<«

the three equations of classic matching theory are fitted as
an ensemble to a set of data. The same quantity is
minimized, but by adjusting a single &, shared across all psf
mean pairs, and one 7, at each psf mean pair, shared by the
three equations at that mean pair.
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Fig. 3. Median percentages of variance accounted for

(%VAF) by Equations 7, 8', and 5’ of the modern theory,
and Equations 3, 4, and 1 of the classic theory of matching.
The x-axis labels identify the dependent variable of each
equation. The error bars span the interquartile range.

modern theory inasmuch as they entailed 13
free parameters compared to the 5 free
parameters for each ensemble fit of the classic
theory. The benefit of the higher %VAFs can
be weighed against the cost of the additional
parameters by comparing the corrected Akaike
Information Criterion (AIC.) calculated for
the modern and classic theories. This quantity
is calculated from the number of data points
and the number of parameters involved in the
fit, and the RSS of the best fit (Motulsky &
Christopoulos, 2004). The AIC, increases with
each of these quantities. When comparing
competing theories, the theory with the
smaller AIC, is considered the better theory.
Because a more complicated account has more
parameters, it will have a larger AIC,.. But if the
RSS it leaves is sufficiently smaller than the RSS
for the less complicated account, then its AIC,
may be reduced to a value smaller than the
AIC,. for the less complicated account. This
would mean that the benefit of the reduced
RSS more than made up for the larger number
of parameters.

One AIC, was calculated for each of the 10
ensemble fits of the modern theory and each
of the 10 ensemble fits of the classic theory.
Equations 1 and 5" were omitted from these
calculations because it is well known that
Equation 1 generally does not describe con-
current schedule data well, and so including
this equation would seem to give an unfair
advantage to the modern theory. Each AIC,
therefore entailed 88 data points (one B; and
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one B, for each of 11 concurrent schedules X
4 psf mean pairs) and the RSS used for each
AIC, was the sum of the eight relevant
individual RSSs (1 for each concurrent sched-
ule component X 4 psf mean pairs). The
schematic diagram in Figure 2 may be helpful
in understanding how these quantities were
calculated.

The absolute values of the AIC.s for the
ensemble fits were large because of the large
number of data points and the correspond-
ingly large number of residuals that contrib-
uted to the RSSs used in their calculation. The
differences between the AIC.s for the modern
and classic theories ranged from 197 to 445 for
the ten comparisons, in every case favoring the
modern theory. These differences were ex-
tremely large because the RSSs left by the
modern theory were much smaller, by at least
an order of magnitude, than those left by the
classic theory. These AIC, differences indicat-
ed overwhelmingly that the modern theory
provided the better account of the data
generated by the evolutionary theory, even
given the additional parameters it entailed.
Evidently, the much smaller RSSs left by the
modern theory more than made up for the
larger number of parameters.

Residuals left by the ensemble fits of the
modern and classic theory equations were
examined by plotting the standardized residu-
als against the dependent variables predicted
by the best fitting equations. For each equa-
tion the residuals were pooled across the four
psf mean pairs, generating 30 sets of residuals
for the modern theory (3 equations X 10
ensemble fits), and 30 sets of residuals for the
classic theory. A cubic polynomial was fitted to
each set of residuals (cf. McDowell & Caron,
2007). Significant (o = .05) cubic polynomial
trends were found for 7 of the 30 sets of the
modern theory’s residuals, and for all 30 sets
of the classic theory’s residuals. Applying a
binomial test, similar to the one recommend-
ed by McDowell (2004), the binomial proba-
bility of identifying 7 of 30 sets of residuals as
nonrandom under the null hypothesis that all
were random was greater than .05, indicating
that these residuals can be considered ran-
dom. In contrast, the binomial probability of
identifying 30 of 30 sets of residuals as
nonrandom under the null hypothesis that
all were random is zero to many decimal
places, indicating that the residuals for the
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classic theory cannot be considered random.
Moreover, the effect sizes (R?) of the trends in
the classic theory’s residuals were quite large,
ranging from 0.49 to 1.00, with a median of
0.88. In contrast, the effect sizes for the
modern theory’s residuals ranged from 0.01
to 0.35 with a median of 0.10.

The parameters of the best fitting equations
of the modern theory and the classic theory
are listed in Table 1 for each mutation rate
and psf mean pair. The ./ parameters in
the table, which are the bias parameters in
Equation 5 (compare Equations 5 and 5'),
were calculated from the estimated ¢;. and co.
parameters. The exponents from the ensem-
ble fits are plotted in the top panel of Figure 4.
The legend in the center panel applies to both
the top and center panels. As shown in the
figure, the exponents increased from very low
values at low mutation rates, to a value of
about 0.8 at mutation rates around 10%, and
then decreased again to very low values as the
mutation rate increased further. In addition to
this marked change as a function of mutation
rate, the exponents also tended to be larger
for smaller psf mean pairs (stronger selection
events), an effect that was more pronounced at
the low and high mutation rates than at the
intermediate rates. Exponents greater than or
equal to 0.7 are plotted in the center panel of
Figure 4. This constitutes a range of expo-
nents, from 0.70 to 0.86, that is more or less
typical of live organisms responding in labora-
tory experiments. Notice that the x-axis in this
panel extends to a mutation rate of only 20%.
This plot shows that stronger selection events
(smaller psf mean pairs) produced exponents
more or less typical of live organisms over a
larger range of mutation rates than did weaker
selection events.

The top two panels of Figure 4 can be
compared to the top two panels of McDowell
etal.’s (2008) Figure 4, which show exponents
for the same data, but obtained from tradi-
tional fits of Equation 5 only, rather than from
the ensemble fits used here. The plots are very
similar, with the exception that in the present
Figure 4, the exponents fell much more
markedly at low mutation rates than in
McDowell et al.’s Figure 4. This is probably
due to McDowell et al. fitting Equation 5 to
each repetition of a condition separately,
rather than to the average of the repetitions,
as was done here. At very low mutation rates,
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the perseverative behavior of the virtual
organisms often resulted in zero reinforce-
ment and response rates in one or the other
component of the concurrent schedules.
Schedules with zero rates could not be used
in the fits for obvious reasons. But when the
repetitions were averaged first, as was done for
the present analyses, the zero rates were
eliminated because the perseveration often
occurred in different components from repe-
tition to repetition. Hence, because the
present method of averaging across repetitions
makes it unnecessary to discard data, the
present Figure 4 evidently represents the
workings of the evolutionary dynamics at low
mutation rates more accurately than does
McDowell et al.’s Figure 4.

The bottom panel of Figure 4 shows how the
bias parameter, b, in Equations 7 and 8
behaves as a function of the psf mean in a
component. Recall that smaller psf means may
correspond to larger reinforcer magnitudes.
Hence bias in favor of a concurrent schedule
component relative to the unchanging back-
ground alternative should decrease as the psf
mean in the component increases. From the
carlier discussion of the composite ¢ parame-
ters, it follows that

be 1 (12)

Y, /.
Hence, b;./7. can be calculated from the
estimates of a and ¢;. that were obtained from
the ensemble fit. If the rate of background
reinforcement is unchanging, which evidently
is required by matching theory (but cf. Soto,
McDowell, & Dallery, 2005), then the behavior
of b1/ 1. must be due solely to changes in 0.
Hence for the selectionist dynamic theory to
be consistent with matching theory, b./7.
must decrease as the psf mean in a component
increases, that is, as the selection events in that
component become weaker. The plots in the
bottom panel of Figure 4 show that this
outcome was in fact obtained. In other words,
the behavior of the ¢ parameter, and hence
of the 0, parameter, in these fits was
consistent with matching theory’s interpreta-
tion of bias. An identical result can be shown
for the quantity b,/ 7., which can be calculated
from the estimates of @ and . using an
expression analogous to Equation 12. The
plots in the bottom panel of Figure 4 also show
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Table 1

Parameters of the best fitting equations of modern and classic matching theory.

Modern Classic
psf mean pair k a Cle [ Coe/ Cle k Te
0.5%
20-20 343.80 0.62 0.17 0.18 1.09 164.49 0.00
40-40 0.49 1.85 2.03 1.10 0.00
60-60 0.33 2.54 2.84 1.12 0.19
80-80 0.22 3.49 3.33 0.96 1.88
1%
20-20 362.63 0.68 1.06 1.11 1.04 231.28 0.00
40-40 0.60 3.19 3.15 0.99 1.40
60-60 0.44 3.90 4.03 1.03 4.35
80-80 0.46 5.66 5.70 1.01 7.05
2%
20-20 364.91 0.74 2.51 2.48 0.99 234.45 0.00
40-40 0.68 5.11 5.03 0.98 2.84
60-60 0.60 6.63 6.70 1.01 6.25
80-80 0.56 8.27 8.26 1.00 9.52
3%
20-20 357.17 0.78 3.64 3.70 1.01 220.37 0.00
40-40 0.73 6.92 6.83 0.99 3.46
60-60 0.66 8.74 9.12 1.04 7.31
80-80 0.63 11.46 11.36 0.99 11.20
5%
20-20 366.85 0.83 7.30 7.24 0.99 224.47 2.33
40-40 0.77 11.46 11.51 1.00 7.08
60-60 0.75 15.19 15.16 1.00 11.42
80-80 0.74 19.72 19.21 0.97 16.27
7.5%
20-20 403.61 0.82 12.95 12.69 0.98 212.83 4.55
40-40 0.80 19.07 19.27 1.01 9.89
60-60 0.78 24.72 24.84 1.01 15.07
80-80 0.72 28.09 28.15 1.00 20.81
10%
20-20 408.90 0.86 17.77 18.24 1.03 192.68 5.17
40-40 0.81 25.42 24.97 0.98 11.46
60-60 0.76 30.13 29.54 0.98 16.76
80-80 0.71 33.82 33.34 0.99 22.18
12%
20-20 426.65 0.86 22.74 22.65 1.00 169.27 4.96
40-40 0.81 30.83 30.72 1.00 10.96
60-60 0.75 35.18 34.20 0.97 15.70
80-80 0.66 35.18 35.53 1.01 20.91
20%
20-20 479.11 0.81 36.01 35.93 1.00 89.89 0.43
40-40 0.70 41.01 40.95 1.00 4.22
60-60 0.57 38.88 39.16 1.01 7.39
80-80 0.45 35.91 35.66 0.99 9.78
50%
20-20 414.45 0.52 30.97 30.82 1.00 45.56 0.00
40-40 0.33 26.76 26.71 1.00 0.00
60-60 0.21 23.38 23.40 1.00 1.07
80-80 0.16 22.20 22.25 1.00 1.57

Note. The parameter, co./ ¢ic, was calculated from the estimates of ¢ and .. The spanner heads identify the mutation
rate; psf stands for parental selection function
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ble 1 plotted as a function of mutation rate. In the center
panel, only exponents = 0.70 are plotted. Notice that the
x-axis in this panel extends to a mutation rate of only 20%.
The legend in the center panel applies to both the top and
center panels. Bottom panel: plot of a quantity related to
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that bias favoring the concurrent schedule
component over the background alternative
decreased with increasing mutation rate, and
this was the case for both b;. and by..

Finally, in these symmetrical concurrent
schedules, the bias parameters, ./ ¢le, In
Equation 5’ must equal unity according to
matching theory. Because the only difference
between the components of the concurrent
schedules were the rates of reinforcement,
there should be no response bias favoring one
component over the other. The values listed in
Table 1 show that these parameters did in fact
vary around unity, with the variability being
rather marked at the lowest mutation rate.

Overall, the %VAF and AIC. comparisons,
the residual trends, and the parametric behav-
ior of the fitted equations in these analyses
support the conclusion that the evolutionary
theory generated steady-state behavior that was
consistent with the modern theory of match-
ing, but that was inconsistent with the classic
theory. One potential problem with these
analyses, however, is that experiments de-
signed to adequately sample the reinforce-
ment ratio domain of Equation 5 may not
adequately sample the two-dimensional abso-
lute reinforcement rate domains of Equations
3,4, 7, 8, and related forms (e.g., Equations 7’
and 8'). This problem is illustrated in Fig-
ure 5, which shows two-dimensional absolute
reinforcement rate floors in the top and
bottom panels. In studies of the evolutionary
theory time is typically divided into 500-tick
blocks, which are taken as standard units,
analogous perhaps to hours (McDowell, 2004;
McDowell et al., 2008). Because a reinforcer
can be delivered during any of the these times
ticks, reinforcement rates in principle can vary
from 0 to 500 reinforcements per 500-tick
block. The concurrent schedules studied here
arranged RI schedules with values between 20
and 120 and sampled a wide range of
scheduled reinforcement rate ratios, ranging
from 0.17 to 6.00. But RI values in the

<«

bias, viz., /7., as a function of the psf mean in a
concurrent schedule component. The legend refers to
mutation rates. At all mutation rates, including those not
plotted in the panel, bias for the concurrent schedule
component over the background alternative decreased as
the selection event in the component weakened, that is, as
the psf mean became smaller.
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components of these schedules translate to
absolute scheduled rates of reinforcement
ranging from only 4.17 to 25 reinforcements
per 500-tick block. These scheduled rates are
plotted as filled symbols in the top panel of
Figure 5. Evidently, they cover only a minus-
cule portion of the reinforcement rate floor,
sampling only about % of 1 percent of the two-
dimensional domains of the absolute response
rate equations. It may be that findings from so
limited a sampling of the reinforcement rate
domain are inaccurate or misleading.

It is of course possible to move further out
into the domain by decreasing the component
RI values, as illustrated in the bottom panel of
Figure 5. All reinforcement rate contours in
this panel sample the range of scheduled
reinforcement rate ratios that was sampled by
the concurrent schedules studied here, but the
absolute reinforcement rates increase as the
contours move away from the origin. Arrang-
ing concurrent schedules with the 37 combi-
nations of scheduled absolute reinforcement
rates depicted by the filled symbols in this
panel is one way to sample more fully the
domains of the single-alternative forms. An-
other way is by arranging concurrent schedules
with the 54 combinations of scheduled abso-
lute reinforcement rates indicated by the
unfilled symbols in the top panel of Figure 5.
To take one example from this panel, the
symbol in the upper right corner represents a
concurrent RI 1 RI 1 schedule. Obviously, the
feedback properties of concurrent RI RI
schedules will cause the obtained reinforce-
ment rates on these schedules to shrink back
toward the origin of the domain. The purpose
of the experiment reported in the following
section was to extend the evaluation of the
evolutionary theory by more fully sampling the
two-dimensional reinforcement rate domains
of Equations 3, 4, 7, 8, and related forms.

EXTENDED SAMPLING OF THE
REINFORCEMENT RATE DOMAIN

In this experiment, the behavior of virtual
organisms animated by the evolutionary dy-
namics was studied as they worked on 54
symmetric concurrent schedules at each com-
bination of four psf mean pairs and five
mutation rates. The scheduled reinforcement
rates in the components of the 54 concurrent
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Fig. 5. Two-dimensional reinforcement rate domains
for Equations 3, 4, 7, and 8, and related forms (e.g.,
Equations 7' and 8'). Filled symbols in the top panel show
the scheduled reinforcement rates in McDowell et al.’s
(2008) concurrent schedule series. Each contour in the
bottom panel samples the same range of reinforcement
rate ratios that is specified by McDowell et al.’s concurrent
schedule series, but the absolute reinforcement rates
increase as the contours move away from the origin.

schedules are indicated by the open symbols in
the top panel of Figure 5.

METHOD
Subjects, Apparatus, and Materials
The same subjects, apparatus, and materials
used by McDowell, et al. (2008) were used in
the present experiment. This included all
details of the population of potential behav-
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Table 2

RI components (in time ticks) of 54 concurrent schedules, corresponding to the scheduled
reinforcement rates represented by the unfilled symbols in the top panel of Figure 5.

Component Component
Schedule Schedule
Number 1 2 Number 1 2
1 1.00 1.00 28 5.00 1.25
2 1.00 1.25 29 5.00 1.67
3 1.00 1.67 30 5.00 2.50
4 1.00 2.50 31 5.00 3.33
5 1.00 5.00 32 5.00 5.00
6 1.25 1.00 33 5.00 6.67
7 1.25 1.25 34 5.00 10.00
8 1.25 1.67 35 5.00 20.00
9 1.25 2.50 36 6.67 5.00
10 1.25 5.00 37 6.67 6.67
11 1.67 1.00 38 6.67 10.00
12 1.67 1.25 39 6.67 20.00
13 1.67 1.67 40 10.00 2.50
14 1.67 2.50 41 10.00 3.33
15 1.67 5.00 42 10.00 5.00
16 2.50 1.00 43 10.00 6.67
17 2.50 1.25 44 10.00 10.00
18 2.50 1.67 45 10.00 20.00
19 2.50 2.50 46 17.00 17.00
20 2.50 3.33 47 20.00 5.00
21 2.50 5.00 48 20.00 6.67
22 2.50 10.00 49 20.00 10.00
23 3.33 2.50 50 20.00 20.00
24 3.33 3.33 51 25.00 25.00
25 3.33 5.00 52 33.00 33.00
26 3.33 10.00 53 50.00 50.00
27 5.00 1.00 54 70.00 70.00

iors, such as circular wrapping of behavioral
phenotypes, and division of the population
into three classes, namely, two target classes
consisting of 41 phenotypes each, and one
extraneous class consisting of 942 phenotypes.

Procedure

Except for the specific concurrent schedules
arranged, the procedure was identical to that
used by McDowell et al. (2008) in every detail.
This included the method of calculating
fitness, the linear form of the parental
selection function, the methods of bit string
recombination and mutation, and the steps of
the genetic algorithm that implemented the
evolutionary theory, all of which are described
in more detail in the Appendix. The 54
concurrent schedules arranged in the experi-
ment are listed in Table 2. The entire set of
schedules was arranged at each combination
of four psf mean pairs, namely, 25-25, 40-40,
60-60, and 80-80, and five mutation rates,
namely, 5, 7.5, 10, 12, and 20%, resulting in
20 experimental conditions. As in McDowell et

al., at the start of exposure to each schedule,
the population of potential behaviors was
preloaded with roughly equal numbers of
behaviors in the two target classes. This
ensured that the probability of emitting the
two target behaviors was relatively high and
relatively equal at the start of exposure to a
schedule. Each schedule remained in effect
for 20,500 generations (time ticks) and each
condition of the experiment was repeated 5 to
10 times. This produced over 100 million
generations of responding.

RESULTS AND DiscussioN

As in previous research (McDowell, 2004;
McDowell et al., 2008) reinforcements and
responses in each component of a schedule
were accumulated in 500-generation blocks.
The first block was always discarded and
frequencies in the remaining 40 blocks were
averaged. The resulting response and rein-
forcement rates were then averaged across
repetitions of a condition and these averages
were used in all analyses.
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As expected, the feedback properties of the
schedules caused the obtained reinforcement
rates to retract toward the origin of the two-
dimensional reinforcement rate domain. The
extent of this retraction was affected by the psf
mean pair, and to a much lesser extent by the
mutation rate. The larger the psf mean pair,
the greater the retraction toward the origin.
Specifically, for the 25-25, 40-40, 60-60, and 80-
80 psf mean pairs, the obtained reinforcement
rates did not exceed approximately 250, 200,
150, or 125 reinforcements per 500 ticks
respectively, more or less regardless of muta-
tion rate. As a result, the experimental
conditions using the 25-25 psf mean pair
effectively sampled roughly 25% of the rein-
forcement rate domain, the conditions using
the 40-40 psf mean pair effectively sampled
roughly 16% of the reinforcement rate do-
main, and the conditions using the 60-60 and
80-80 psf mean pairs sampled roughly 9% of
the reinforcement rate domain. These sam-
pling percentages greatly exceeded the rough-
ly 0.25% sampling percentage for the data
analyzed in the previous section.

Equations 7', 8’, and 5" of modern matching
theory were fitted simultaneously as an ensem-
ble to the 12 sources of variance at each of the
five mutation rates. Hence, five ensemble fits
of the modern theory’s equations were carried
out. The schematic diagram in Figure 2 again
summarizes the analysis, which was the same as
that used previously, except that each source
of variance consisted of response and rein-
forcement rates from 54 rather than 11
concurrent schedules. For each ensemble fit,
the sum of the 12 individual RSS/SS ratios
(Equation 11) was minimized by adjusting one
k parameter, shared across all sources of
variance, and four sets of a, ¢. and ¢
parameters, each set shared by the three
sources of variance at a specific psf mean pair.
Five ensemble fits of the classic theory’s
Equations 3, 4, and 1 were also carried out
by simultaneously adjusting one k parameter,
shared across all sources of variance, and four
7. parameters, one shared by the sources of
variance at each psf mean pair.

As in the previous analyses, %VAFs were
calculated separately for each source of vari-
ance. These %VAFs ranged from 84% to 100%
for the modern theory fits and from 71% to
96% for the classic theory fits. The median
percentages of variance accounted for are
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(%VAF) by fits of Equations 7', 8, and 5" of the modern
theory, and Equations 3, 4, and 1 of the classic theory of
matching to data from the extended domain sampling
experiment. The waxis labels identify the dependent
variable of each equation. The error bars span the
interquartile range.

plotted in Figure 6. The %VAFs for the classic
theory did not include negative values and
were much less variable than those shown for
the classic theory in Figure 3, evidently be-
cause extreme mutation rates were not used in
the present experiment. Overall, these %VAFs
indicated that both the modern and the classic
theory provided reasonably good descriptions
of the data. Importantly, however, individual
%VAFs for the modern theory exceeded those
for the classic theory in all 60 comparisons of
the two theories.

The tradeoff between number of parameters
and magnitude of the RSS for the two theories
was assessed by means of the AIC., which was
calculated as described earlier. The differences
between the AIC.s for the modern and classic
theories were very large and favored the
modern theory in all five comparisons. The
large differences were again due to much
larger RSSs for the classic theory fits. These
differences indicate overwhelmingly that the
modern theory described the data better than
the classic theory.

The residuals left by the ensemble fits were
pooled and plotted as before, and a cubic
polynomial was fitted to each set of residuals.
Significant (a0 = .05) cubic polynomial trends
were found for 4 of the 15 sets of the modern
theory’s residuals, and for all 15 sets of the
classic theory’s residuals. According to the
binomial test used earlier, the probability of
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Fig. 7. Top panel: exponents from Table 3. Bottom
panel: exponents from the corresponding conditions in
the previous analysis (Table 1), where a more restricted
reinforcement rate domain was used.

identifying 4 of 15 sets of residuals as
nonrandom under the null hypothesis that
all were random is .55, indicating that the
residuals left by the modern theory can be
considered random. For the classic theory, the
probability of identifying 15 of 15 sets of
residuals as nonrandom under the null hy-
pothesis that all were random is essentially
zero, indicating that the residuals left by the
classic theory cannot be considered random.
As in the previous analysis, the effect sizes of
the cubic polynomial trends in the classic
theory’s residuals were often quite large,
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ranging from 0.14 to 0.90, with a median of
0.27. For the modern theory, the effect sizes of
the cubic polynomial trends ranged from 0.00
to 0.08, with a median of 0.02. It might seem
that an effect size within the latter range would
not be judged statistically significant, but this
occurred because of the large number of
residuals in each set (216 = 54 concurrent
schedules X 4 psf mean pairs), which translat-
ed into a large number of degrees of freedom
for the error term in the trend test.

The parameters estimated from the ensem-
ble fits are listed in Table 3. Exponents from
the table are plotted in the top panel of
Figure 7. All exponents ranged between 0.6
and 0.9 and tended to remain relatively
constant across the mutation rates studied. This
is in contrast to the exponents for the same
conditions in the ensemble analyses carried out
in the previous section. The latter exponents,
listed in Table 1, are plotted in the bottom
panel of Figure 7 for comparison. For the 25-25
(or 20-20) and the 40-40 psf mean pairs the
exponents were roughly the same for the
present data as for the data analyzed previously.
But for the 60-60 and 80-80 psf mean pairs the
exponents from fits to the present data tended
to be a bit lower at the lower mutation rates
than exponents from the previous analysis, and
then remained at that level as mutation rate
increased. In contrast, the exponents from the
previous analysis tended to be higher at the
lower mutation rates, and then fell at the higher
mutation rates. Over the range of mutation
rates studied in this experiment then, the
behavior of the exponents differed depending
on how extensively the reinforcement rate
domain was sampled.

Bias favoring a concurrent schedule compo-
nent over the background alternative was
examined by calculating the quantity defined
by Equation 12 and the analogous quantity for
boc/7e. As was the case for the previous analysis
(illustrated in the bottom panel of Figure 4),
these quantities declined as the selection
events in the component became weaker
relative to the background alternative. Howev-
er, the absolute magnitudes of the quantities
containing the bias parameters were always
larger for the present data than for the data
analyzed previously. Finally, as shown by the
tae/ €1 quantities in Table 3, there was no bias
favoring one component over the other in
these symmetrical concurrent schedules.
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Table 3

Parameters of the equations of modern and classic matching theory estimated from ensemble fits
to data from the extended domain sampling experiment.

Modern Classic
psf mean pair k a Cle [N Coe/ Cle k Te
5%
25-25 284.46 0.80 1.62 1.58 0.98 244.19 0.12
40-40 0.73 5.58 5.38 0.96 12.44
60-60 0.69 12.67 12.73 1.00 26.42
80-80 0.63 14.90 15.90 1.07 44.68
7.5%
25-25 285.67 0.81 3.38 3.41 1.01 244.12 1.78
40-40 0.77 9.08 9.17 1.01 19.70
60-60 0.70 15.67 15.85 1.01 32.20
80-80 0.63 17.73 17.61 0.99 52.96
10%
25-25 289.21 0.81 5.66 5.59 0.99 250.70 4.83
40-40 0.82 14.19 14.21 1.00 29.08
60-60 0.78 20.28 20.24 1.00 42.84
80-80 0.68 24.39 24.01 0.98 63.99
12%
25-25 285.39 0.89 9.16 9.11 1.00 245.06 5.71
40-40 0.80 14.68 14.92 1.02 31.48
60-60 0.72 21.29 21.32 1.00 44.92
80-80 0.69 26.05 25.92 1.00 66.02
20%
25-25 300.11 0.83 17.75 17.51 0.99 240.72 14.87
40-40 0.77 25.44 25.22 0.99 48.31
60-60 0.72 32.44 31.99 0.99 64.12
80-80 0.68 37.76 37.88 1.00 85.33

Note. The parameter, c./ ¢i., was calculated from the estimates of ¢;, and cy,. The spanner heads identify the mutation

rate.

These results showed that when the absolute
reinforcement rate domain was sampled more
fully, the behavior generated by the evolution-
ary dynamics remained consistent with the
modern theory of matching, including its
constant-k assumption, and remained incon-
sistent with the classic theory of matching.
However, the results also showed that some
properties of the behavior generated by the
evolutionary theory differed when the rein-
forcement rate domain was sampled more
extensively. This difference was reflected in
differences in the exponent and the bias
parameters of the modern matching theory
equations.

GENERAL DISCUSSION

The evolutionary theory of behavior dynam-
ics consists of low-level rules of selection,
reproduction, and mutation that are formally
unrelated to higher-level, time-averaged prop-

erties of the behavior the rules generate.
Consequently, it is remarkable that the high-
er-level behavior agreed precisely with the
modern theory of matching. This agreement
was observed in ensemble fits that enforced
the theory’s constant-k requirement, and also
enforced at each psf mean pair the identity of
parameters theoretically (i.e., mathematically)
required to be identical across the three
equations of the theory. These restrictive fits
not only accounted for large percentages of
response rate variance, but they also left
random residuals, which indicates that no
other account is likely to describe behavior
generated by the evolutionary theory better
than modern matching theory.

Of course, the agreement between the
evolutionary dynamics and modern matching
theory constitutes support for the former only
if the latter is the correct account of the steady-
state behavior of live organisms. As noted
earlier, McDowell (2005) argued that this
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account was tenable, while attempting to show
that the classic theory was false. Although few
data sets have been subjected to the restrictive
ensemble fits conducted here, whenever such
fits have been reported (Dallery et al., 2004;
McDowell, 2005), the results were consistent
with the modern theory of matching, and
inconsistent with the classic theory. Neverthe-
less, further testing is surely worthwhile,
especially with regard to the constant-k as-
sumption of the modern theory. The analo-
gous assumption of the classic theory proved
to be its downfall, according to some research-
ers (Dallery & Soto, 2004; McDowell 2005),
and consequently its modern theory version
merits careful scrutiny.

The values and properties of the parameters
from the ensemble fits of the modern match-
ing theory equations lend further support for
the evolutionary dynamics. At moderate muta-
tion rates, exponents, a, ranged between about
0.6 and about 0.9, a range that is often
observed in experiments with live organisms.
But note also that when the equations were
fitted to individual repetitions of conditions at
moderate mutation rates in McDowell et al.
(2008), the exponents varied more widely,
including values as small as about 0.3 and
values larger than unity, with a mean and
median remaining at about 0.8. It is not
uncommon to observe these more extreme
values in experiments with live organisms.

The bias parameters, b, b, and b
(= e/ c1e) estimated from these fits also
behaved in ways that were consistent with bias
parameters obtained from experiments with
live organisms. Specifically, the first two
parameters decreased as the selection events
in the concurrent schedule components weak-
ened relative to the unchanging background
alternative, and b9 varied around unity in the
symmetric concurrent schedules.

Regarding the evolutionary theory itself, it is
essential to obtain an accurate understanding
of its emergent outcomes, both for the sake of
comparing them to data from live organisms,
and also for the sake of making reliable novel
predictions that can be tested in live experi-
ments. It is important that the outcomes and
predictions in fact follow from the theory and
are not artifacts due to, for example, inade-
quate sampling of independent variable do-
mains. The results shown in Figure 7 are a case
in point. One may ask what the true behavior
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of these exponents is, according to the
evolutionary theory. When the entire rein-
forcement rate domain is sampled, would the
exponents remain constant at more extreme
mutation rates, as is perhaps suggested by the
results plotted in the top panel of Figure 7, or
would they decline as suggested by the
exponents in the top panel of Figure 4° A
third possibility is that they would remain
relatively constant when the entire domain is
sampled, but would decline markedly at
mutation rate extremes whenever one of the
“restricted” contours shown in the bottom
panel of Figure 5 is followed. These are of
course questions that can only be answered by
further computational experiments.

A puzzling feature of the evolutionary
theory is what, if anything, its elements might
be understood to represent in the material
world. Clearly, behaviors do not have geno-
types, cannot reasonably be said to mate, or to
reproduce by recombination or in any other
way, and so on. Of course the theory can be
understood on purely formal grounds, just as
an equation can be understood as describing
events in the natural world without itself
corresponding to anything material. However,
it has been argued elsewhere (McDowell,
2004) that the accuracy of the evolutionary
theory suggests that whatever material events
are responsible for instrumental behavior, they
must be computationally equivalent to selec-
tion by consequences. McDowell and Caron
(2007) noted that this view, when taken to its
logical conclusion, suggests that organic evo-
lution produced a copy of itself in the nervous
systems of biological organisms for the pur-
pose of regulating their behavior during their
individual lifetimes.

Interestingly, a selectionist theory of brain
function was proposed more than 20 years ago
by Gerald Edelman (1987). This is a theory of
whole brain functioning in intact organisms
behaving in environments where actions can
have consequences. Briefly, the theory propos-
es that groups of neurons subserving behavior
are selected by these consequences, and
thereafter are more likely to become activated
under similar circumstances. Edelman’s theo-
ry, which needless to say is more extensive and
complex than suggested here, is modeled after
his successful selectionist theory of immune
system function, for which he won the Nobel
Prize in Physiology or Medicine in 1972.
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Edelman (2007) recently implemented a
version of his theory in a mechanical agent,
known as Darwin VII, which showed rudimen-
tary adaptive behavior in a laboratory environ-
ment. McDowell (2010) examined more fully
the relationship between the evolutionary
theory of behavior dynamics and Edelman’s
theory, and noted that

...the bit, the bit sequence, the bit string, and
the bit string class are realized in [Edelman’s
theory] as a neuron, a synapse, a neuronal
group, and a collection of degenerate neuro-
nal groups [all having the same function]. In
addition, the action of selection, which is
carried out formally by the parental selection
function in the [evolutionary theory of behav-
ior dynamics] is realized in [Edelman’s theory]
by the operation of diffuse value systems in the
brain that alter synaptic strengths or thresh-
olds.

The evolutionary theory is a functional
dynamic theory in the same sense that, to take
a well known example, Newton’s second law,
F = ma, is a functional dynamic theory.
Newton’s second law describes in a completely
general way how an unbalanced force causes
an acceleration. To wunderstand how the
general law applies to a specific material
object, say, a rocket nozzle, requires detailed
knowledge of the nozzle’s properties, the
physics of expanding gasses, and so on.
Similarly, the general evolutionary theory of
behavior dynamics may be implemented in
biological organisms by means of something
like the selectionist neural mechanisms pro-
posed by Edelman. If so, the result would be a
comprehensive account of adaptive behavior
that extended from brain function to the
behavior of whole organisms in quantitative
detail.
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MECHANICS OF ADAPTIVE BEHAVIOR
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Fig. Al

Top panel: a frequency distribution of 100 potential behaviors selected at random from the range, 0 to 1023.

The integer values are the behaviors’ phenotypes. The horizontal bars beneath the xaxis span two operant classes.
Middle panel: father and mother bit strings are recombined to produce a child bit string. Bits in a child’s bit string come

from the father (bold) or the mother with equal probability.

Decimal integers (phenotypes) corresponding to each bit

string (genotype) are given in the panel. Bottom panel: mutation occurs in a fraction of a new population’s behaviors

when a random bit in the behavior’s bit string is flipped.

APPENDIX

The selectionist theory operates on a popu-
lation of 100 potential behaviors, each of
which is represented by a l0O-character se-
quence of Os and Is. These ten-character bit
strings range from ‘0000000000  to
“1111111111” and constitute binary represen-

tations of the decimal integers, 0 through
1023. A behavior’s bit string is its genotype; the
decimal integer into which the bit string
decodes is its phenotype. The top panel of
Figure Al shows a frequency distribution of
100 behavioral phenotypes drawn at random
from the range 0 through 1023. This is a
population of potential behaviors.
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Behavioral phenotypes can be grouped into
operant classes. For all concurrent-schedule
experiments discussed in this article, two
target classes were defined, one by the 41
integers from 471 through 511, the other by
the 41 integers from 512 through 552. These
two ranges are indicated, approximately, by
the horizontal bars beneath the wxaxis in the
top panel of Figure Al. The two ranges of
phenotypes correspond to behaviors that
successfully operate two manipulanda. Behav-
iors that do not fall in either operant class are
extraneous behaviors.

At each moment of time a behavior is
randomly emitted from the population of
potential behaviors that exists at that moment.
Following emission, 100 pairs of parent behaviors
are chosen from the population and are mated to
produce 100 child behaviors, which constitute
the next generation. If the emitted behavior was
reinforced, then the parents are chosen on the
basis of their fitness. If the emitted behavior was
not reinforced, then the parents are chosen at
random. In all experiments discussed in this
article, the fitness, x, of a behavior was defined as
the absolute value of the difference between its
phenotype and the middle phenotype of the
target class from which the reinforced behavior
was emitted. Hence, smaller values of x corre-
sponded to fitter behaviors. The fitness of the
behaviors in the population was then used to
choose parents according to the linear probabil-
ity density function,

(A1)

where ptis the mean of the density function, and 0
= x = 3, which means that behaviors with fitness
values = 3p had no chance of becoming parents.
This is the simplest linear density function that
depends only on its mean. Note the negative
slope. Every behavior in the population is
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assigned a fitness, x. The greater its fitness (i.e.,
the smaller the x), the greater the probability
density associated with its becoming a parent.
Parents chosen in this way are relatively fit, that is,
relatively close in integer value to the emitted
behavior. Notice also that the average fitness of
parents chosen in this way is inversely related to
the mean of the density function. In the text,
linear density functions with various means are
referred to as parental selection functions.

After 100 pairs of parents are chosen, each
pair is mated to produce one child behavior.
Mating is illustrated in the center panel of
Figure Al, which shows a form of multipoint
crossover recombination of the parents’ bit
strings. In all experiments discussed in this
article, each bit in the child’s bit string had a
50-50 chance of coming from the same
location in the father’s or the mother’s bit
string. This method of recombination produc-
es child behaviors with phenotypes that are
more or less similar to the father’s, the
mother’s, or both parents’ phenotypes.

The new population produced by recombi-
nation of the parent’s bit strings then under-
goes a small amount of mutation, which is
illustrated in the bottom panel of Figure Al. In
all the experiments discussed in this article,
each behavior in the new population had a
finite probability of undergoing mutation (re-
ferred to in the text as the mutation rate), which
consisted of flipping one randomly chosen bit.

Following mutation, a randomly chosen
behavior from the population is emitted and
the processes of selection (if the behavior is
reinforced), reproduction, and mutation are
repeated. This generates a continuous stream
of behavior that can be studied just as if it were
produced by a live organism. The elements
described in this appendix constitute the
selectionist theory in its entirety. It has no
other features, properties, or constraints.



